Publications
3D Assessment of Irreversible Electroporation Treatments in Vegetal Models. In: 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies. Vol. 53. 1st World Congress on Electroporation and Pulsed Electric Fields in Biology, Medicine and Food & Environmental Technologies. Springer Singapore; 2016. pp. 294-297. Available from: http://dx.doi.org/10.1007/978-981-287-817-5_65 (348.63 KB)
. Anatomically Realistic Simulations of Liver Ablation by Irreversible Electroporation: Impact of Blood Vessels on Ablation Volumes and Undertreatment. Technology in Cancer Research & Treatment. 2017 ;[Epub ahead of print]. (1.15 MB)
. Assessment of Electroporation by Electrical Impedance Methods. In: Handbook of Electroporation. Handbook of Electroporation. Springer International Publishing; 2016. pp. 1-20 (electronic).
. Auricular transcutaneous vagus nerve stimulation acutely modulates brain connectivity in mice. Frontiers in Cellular Neuroscience [Internet]. 2022 ;16:856855. Available from: https://www.frontiersin.org/articles/10.3389/fncel.2022.856855/abstract
. Auricular transcutaneous vagus nerve stimulation improves memory persistence in naïve mice and in an intellectual disability mouse model. Brain Stimulation [Internet]. 2020 ;13(12):494-498. Available from: https://doi.org/10.1016/j.brs.2019.12.024
. Avoiding nerve stimulation in irreversible electroporation: a numerical modeling study. Physics in Medicine and Biology. 2017 ;62(20):8060-8079. (1004.9 KB)
. Avoiding neuromuscular stimulation in liver irreversible electroporation using radiofrequency electric fields. Physics in Medicine and Biology. 2018 ;63(3):035027. (1.33 MB)
. Bidirectional communications in wireless microstimulators based on electronic rectification of epidermically applied currents. In: Neural Engineering (NER), 2015 7th International IEEE/EMBS Conference on. Neural Engineering (NER), 2015 7th International IEEE/EMBS Conference on. ; 2015. (738.6 KB)
. Bioimpedance Measurements and the Electroporation Phenomenon. Revue 3EI. 2014 ;75:21-26. (1.02 MB)
. Can electroporation previous to radiofrequency hepatic ablation enlarge thermal lesion size? A feasibility study based on theoretical modelling and in vivo experiments. International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group [Internet]. 2013 ;29:211–8. © 2013 Informa UK Ltd. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23573935 (586.06 KB)
. Charge Counter for Performing Active Charge-Balance in Miniaturized Electrical Stimulators. In: 6th European Conference of the International Federation for Medical and Biological Engineering SE - 64. Vol. 45. 6th European Conference of the International Federation for Medical and Biological Engineering SE - 64. Springer International Publishing; 2015. pp. 256 - 259. Available from: http://dx.doi.org/10.1007/978-3-319-11128-5_64 (393.72 KB)
. The combination of electroporation and electrolysis (E2) employing different electrode arrays for ablation of large tissue volumes. PLoS One [Internet]. 2019 ;14(8):e0221393. Available from: https://doi.org/10.1371/journal.pone.0221393
. Comparing High-Frequency With Monophasic Electroporation Protocols in an In Vivo Beating Heart Model. JACC: Clinical Electrophysiology. 2021 ;7(8):959-964. (1.31 MB)
. Comparison of the effects of the repetition rate between microsecond and nanosecond pulses: Electropermeabilization-induced electro-desensitization?. Biochimica et Biophysica Acta (BBA) - General Subjects [Internet]. 2014 ;1840:2139 - 2151. Available from: http://www.sciencedirect.com/science/article/pii/S0304416514000725
. A computational comparison of Radiofrequency and Pulsed Field Ablation in terms of lesion morphology in the cardiac chamber. Scientific Reports [Internet]. 2022 ;12. Available from: https://doi.org/10.1038/s41598-022-20212-9
. Demonstration of 2 mm thick microcontrolled injectable stimulators based on rectification of high frequency current bursts. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2017 ;25(8):1343 - 1352. (969.52 KB)
. Dependence of electroporation detection threshold on cell radius: an explanation to observations non compatible with Schwan’s equation model. Journal of Membrane Biology. 2016 ;249(5):663-676. (1.01 MB)
. Design, Construction and Validation of an Electrical Impedance Probe with Contact Force and Temperature Sensors Suitable for in-vivo Measurements. Scientific Reports. 2018 ;8:14818. (2.3 MB)
. Detection of permeabilisation obtained by micropulses and nanopulses by means of bioimpedance of biological tissues. In: 5th European Conference on Antennas and Propagation (EUCAP). 5th European Conference on Antennas and Propagation (EUCAP). Rome, Italy; 2011. pp. 3164–3167. © 2011 Institute of Electrical and Electronics Engineers, Inc. (1012.2 KB)
. Dynamics of Cell Death After Conventional IRE and H-FIRE Treatments. Annals of Biomedical Engineering [Internet]. 2020 ;48:1451–1462. Available from: https://doi.org/10.1007/s10439-020-02462-8
. Dynamics of High-Density Unipolar Epicardial Electrograms During PFA. Circulation: Arrhythmia and Electrophysiology [Internet]. 2023 :e011914. Available from: https://www.ahajournals.org/doi/10.1161/CIRCEP.123.011914
. Effect of applied voltage, duration and repetition frequency of RF pulses for pain relief on temperature spikes and electrical field: A computer modeling study. International Journal of Hyperthermia [Internet]. 2018 ;34(1):112-121. Available from: http://dx.doi.org/10.1080/02656736.2017.1323122 (676.96 KB)
. Effects of Contact Force on Lesion Size During Pulsed Field Catheter Ablation: Histochemical Characterization of Ventricular Lesion Boundaries. Circulation: Arrhythmia and Electrophysiology [Internet]. 2023 ;(Online ahead of print.):e012026. Available from: https://doi.org/10.1161/CIRCEP.123.012026
Electric field redistribution during tissue electroporation: its potential impact on treatment planning. Comptes Rendus Physique. 2010 ;Accepted (still pending publication). (527.24 KB)
. Electrical impedance characterization of normal and cancerous human hepatic tissue. Physiological measurement [Internet]. 2010 ;31:995–1009. © 2010 Institute of Physics and IOP Publishing Limited. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20577035 (710.34 KB)
.