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Abstract 

Background: The thermal and electrical effects of pulsed radiofrequency (PRF) for pain 

relief can be controlled by modifying the characteristics of the RF pulses applied. Our goal 

was to evaluate the influence of such modifications on the thermal and electric performance 

in tissue. 

Methods: A computational model was developed to compare the temperature and electric 

field time courses in tissue between a standard clinical protocol (45 V pulses, 20 ms 

duration, 2 Hz repetition frequency) and a new protocol (55 V pulses, 5 ms duration, 5 Hz 

repetition frequency) with a higher applied electric field but a smaller impact on 

temperature alterations in tissue. The effect of including a temperature controller was 

assessed. Complementarily, an agar-based experimental model was developed to validate 

the methodology employed in the computer modeling. 

Results: The new protocol increased the electric field magnitude reached in the tissue by 

around +20%, without increasing the temperature. The temperature controller was found to 

be the fundamental factor in avoiding thermal damage to the tissue and reduced the total 

number of pulses delivered by around 67%. The experimental results matched moderately 

well with those obtained from a computer model built especially to mimic the experimental 

conditions. 

Conclusions: For the same delivered energy, the new protocol significantly increases the 

magnitude of the applied electric field, which may be the reason why it is clinically more 

effective in achieving pain relief. 
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INTRODUCTION 

Radiofrequency (RF) energy is clinically used in pain management. In contrast to the wide 

area of the thermally coagulated zone manifested after continuous RF (CRF), pulsed RF 

(PRF) has demonstrated positive effects on pain treatment without provoking any permanent 

neurological disruptions [1–4]. While CRF causes pain relief by the effect of the tissue 

thermocoagulation creating irreversible injury to the target nerve, PRF involves lower 

temperatures (below 42−44ºC), which is considered to be the limit value at which no 

thermally induced necrosis is observed [5][6]. As a result, the PRF technique can be applied 

to the neural regions that have both sensory and motor fibers (e.g. peripheral nerves) without 

any risk of further motor deficits [7][8]. 

According to recent studies, there is no definitive explanation for the mechanisms 

involved in PRF. An exhaustive review of experimental observations regarding the potential 

PRF action mechanisms can be found in [9]. Different effects of exposure to PRF electrical 

fields have already been reported. Some studies have revealed evidence of morphological 

changes in the neuronal cells after PRF treatment that affect the inner structures of axons 

[1,10–12]. These structural changes consist of mitochondria swelling and disruption of the 

normal organization of the microtubules and microfilaments that preferentially affect C-

fibers and to a lesser extent Aδ fibers. In addition, transient ultrastructural changes such as 

endoneurial edema and collagen deposition have also been found [13]. Besides structural 

changes, the effects on cellular activity and gene expression have also been observed 
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[14][15] [1] as well as an increase in the expression of inflammatory proteins [12]. All these 

effects could potentially inhibit the transmission of nerve signals through C-fibers, which 

would lead to pain relief [9]. 

It is widely accepted that the PRF action mechanism is most likely related to the induced 

electric field, rather than to thermal effects. Several explanations of how exposure to an 

electric field can lead to the observed structural effects have been proposed, including: an 

alteration of the axonal membranes due to electroporation [16], an effect on the intracellular 

organelles due to the internal electric field [10] or a long-term depression of the synaptic 

transmission due to electrical stimulation [17]. However, to the best of our knowledge, no 

explanation has been postulated on how the electric field can trigger the observed changes in 

cellular activity and gene expression or the anti-inflammatory responses. A recent clinical 

study (employing a temperature control with the upper limit set at 42ºC) reinforces the 

hypothesis that the effects of PRF treatment are probably related to the electric field 

magnitude [18]. 

PRF has usually been based on a train of RF bursts (pulses) with a 10−20 ms duration 

and a 1−2 Hz repetition frequency [16],[19]. The application of each burst provokes a 

temperature spike in the electrode tip that could have destructive thermal effects. It has been 

observed from both computer and experimental models that the longer pulse durations cause 

higher temperature spike magnitudes [16]. With this idea in mind, a new timing pattern 

consisting of pulses of 5 ms duration and 5 Hz repetition frequency is being clinically 

employed in an attempt to reduce temperature spike magnitude [20]. In addition, this new 

timing pattern is associated with the use of higher values of applied voltage (55 V instead of 

45 V). Surprisingly, the impact of this new protocol (55 V−5 ms−5 Hz) on temperature spike 
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magnitudes and electric field has not as yet been assessed. Although the clinical outcome of 

the new protocol should be assessed by clinical studies, the computer modeling technique 

can be a valuable tool for studying the thermal and electrical performance of RF-based 

clinical techniques. 

With the foregoing considerations in mind, we planned a computer modeling study aimed 

at assessing the differences between the standard protocol (SP) (45 V pulses with 20 ms 

duration and 2 Hz repetition frequency [21,22]) and the new protocol (NP) (55 V pulses 

with 5 ms duration and 5 Hz repetition frequency [20]). An additional protocol (AP) 

consisting of 45 V pulses with 8 ms duration and 5 Hz repetition frequency was also 

considered, since it provides the same energy as the SP (20 ms × 2 Hz = 8 ms × 5 Hz = 40 

ms/s) and employs the same repetition frequency as the NP protocol. In this way the 

influence of the pulse duration on both the AP and NP protocols could be evaluated. The 

computer models also included a temperature controller, similar to the one implemented in 

RF generators used in clinical practice, to assess the impact of this controlling technique on 

the temperature spike magnitudes and electric field. A complementary in vitro study based 

on an agar phantom was also conducted to validate the methodology used in the 

computational models. 

 

MATERIALS AND METHODS 

Model geometry 

A PRF procedure was modeled with a 22-gauge needle electrode (0.64 mm in diameter) 

with a 10 mm long exposed tip. Figure 1A shows the two-dimensional model with three 

domains, consisting of muscle tissue, plastic cover (shaft) and electrode (exposed metallic 
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part). The dispersive electrode (patch) was modeled as a zero voltage boundary condition on 

the outer boundaries (see Fig. 1). The optimal dimensions of all the outer boundaries were 

established by means of a sensitivity analysis in which the maximum temperature reached at 

the electrode tip ( MAXT ) was used as the control parameter. The dimensions were gradually 

increased until the difference of MAXT  between two subsequent simulations was less than 

0.5%, after which the dimensions of the previous model were considered to be adequate. 

 

Material properties 

The properties of the materials employed in the model are shown in Table I. Tissue thermal 

conductivity (k) was assumed to be constant with temperature, while electrical conductivity 

(σ) was modeled as a temperature (T) dependent function that grows exponentially 

+1.5%/°C at temperatures up to 99ºC [23]. Assuming that tissue temperature during PRF 

will stay below 99ºC, no desiccation due to water vaporization was modeled. The electrical 

conductivity of muscle tissue (at 37ºC) was set to 0.28 S/m. This led to an impedance 

magnitude of approximately 350 Ω between the needle electrode and the dispersive 

electrode. This same value is typically found during PRF treatment under the same 

conditions as those used in this study and derives from the dielectric properties of the 

different tissues encountered along the path of the electric current. This value lies between 

those reported for muscle (0.45 S/m) and nerve (0.11 S/m) [24], and matches well with the 

physical situation in PRF, in which the electrode is inserted into muscle adjacent to a target 

nerve. 

 

Numerical model 
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The computational model was based on a coupled electric-thermal problem. A quasi-static 

approach was proposed for the solution. The governing equation for the electrical problem 

was: 

          (1) 

where V is the voltage, which is related with the electric field (E) by 

           (2) 

The thermal problem was solved using the Bioheat Equation: 

pQmQqT)(k
t
Tρc +++∇⋅∇=
∂
∂              (3) 

where ρ is density of tissue, c specific heat, k thermal conductivity, T temperature, t time, q 

heat source generated by RF power, Qm metabolic heat generation (not considered in RF 

ablation) and Qp heat loss from blood perfusion described as: 

)( TTcQ abbbp −−= ρω          (4) 

where ωb is the blood perfusion coefficient equal to 6.63×10−4 s−1 (volume blood per unit 

mass tissue per unit time), ρb and cb are the density and specific heat blood of values 1000 

kg/m3 and  4180 J/(kg∙K) respectively and Ta is the temperature of the arterial blood (37ºC) 

[25]. The heat source q was taken from the electrical problem and evaluated as , 

where J is the current density, which is obtained from . No blood perfusion was 

assumed when tissue reached a 99% probability of thermal necrosis. The degree of thermal 

necrosis was estimated by a function based on the Arrhenius model: 

∫
∆−

=Ω
t

RT
E

dAet
0

)( t           (5) 

where R is the universal gas constant, A frequency factor, 3×1044 s-1 and ΔE activation 

energy for the irreversible damage reaction, 2.90×105 J/mol [26]. Thermal damage contours 

0))(( =∇⋅∇ VTσ

V−∇=E

EJ ⋅=q

EJ σ=
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were estimated with the isolines Ω = 4.6 and Ω = 1, which correspond to a 99% and 63% 

probability of cell death, respectively. Regarding the electrical boundary conditions, no 

current was assumed on the symmetry axis or on the boundary parallel to it (see Fig. 1). 

Voltage (45 or 55 V) was set at the electrode and applied as a pulse train, while 0 V was set 

at the boundaries of the tissue perpendicular to the symmetry axis. Thermal boundary 

conditions involved the temperature on external boundaries fixed at 37°C. No heat flux was 

considered in the direction transverse to the symmetry axis. The initial temperature of the 

tissue was set to 37ºC. 

Three protocols were considered. While a root-mean-square (RMS) voltage of 45 V is 

typically used in clinical practice with the SP, the NP usually involves higher magnitudes, 

values of 55 V [20] and even up to 60 V [27,28] have been proposed. Values of 45 V and of 

55 V were simulated here. The value of 55 V combined with 5 ms−5 Hz is used, since it can 

deliver an energy value comparable to that of 45 V combined with 20 ms−2 Hz. This means 

that 20 ms−2 Hz with 45 V, 8 ms−5 Hz with 45 V, and 5 ms−5 Hz with 55 V are equivalent 

protocols in terms of energy supplied to the tissue. 

 

Analysis of thermal and electric performance 

To analyze the thermal and electric performance a set of points of interest were defined as 

shown in Figure 1B. Thermal analysis included the temperature time course at an internal 

point of the sharp end of the electrode (SENS) and at the electrode point (TIP). For each 

pulse, the maximum ( MAXT ) and minimum ( MINT ) temperatures reached in the tissue close 

to the electrode tip were analyzed, along with the temperature spike magnitude ( ST ) 

obtained as MINMAX TT − . To be more precise, MAXT  was the temperature measured at the 
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end of each pulse, while MINT was the lowest value reached just before starting the pulse. In 

the electric analysis, the RMS (root-mean-square) value of electric field magnitude (|E|) 

was assessed at point TIP and at eight locations in the tissue, equally distributed across 

radial (P1 - P4) and axial directions (P5 - P8) (see Fig. 1B). These two directions were chosen 

as they are known to have different electric performances [16]. 

 

Temperature controller  

The PRF procedure is habitually conducted with a temperature controller in order to avoid 

thermal lesions in the tissue due to excessive heating [19,29,30]. This control is achieved by 

means of a temperature sensor placed at the exposed sharpened tip of the electrode. To keep 

sensor temperature below the threshold of 42ºC, the applied voltage is modified accordingly, 

either by gradually reducing voltage or by transiently switching off the pulse application 

when tip temperature rises above the permitted maximum [1,7,10,14,21]. The SENS point 

shown in Figure 1B was defined specifically to mimic the location of the temperature sensor 

[16]. The temperature control was implemented in the model as an algorithm switching the 

input voltage between non-zero (on state) and zero value (off state). The state was 

determined in time by an implicitly defined event for which 42ºC and 41ºC measured at the 

SENS point were temperature set points for off and on states, respectively.  

 

Meshing and model solver 

A heterogeneous triangular mesh was used with 5,312 elements and 25,578 degrees of 

freedom. A refinement in the area surrounding the electrode was applied. Mesh size was 

determined by a convergence test computed for the maximum tissue temperature ( MAXT ) and 

9 
 



  

was gradually increased until the differences in MAXT  between simulations were less than 

0.5%. The criterion used for time step optimization was the difference in temperatures, 

which was required to be less than 0.5°C between two consecutive simulations. The model 

was solved by the Finite Element Method using COMSOL Multiphysics 5.1 software 

(COMSOL AB, Stockholm, Sweden). 

 

Experimental validation 

In order to validate the methodology used in the computational model, an experimental 

model based on an agar phantom (0.1% NaCl, dimensions 86.5×86.5×38 mm) was 

employed to obtain thermal and electrical measurements. Figure 2(A) shows an overview of 

the experimental setup. A disposable 18G 10-mm RF electrode (St. Jude Medical, Saint 

Paul, MN, USA) was inserted halfway into the agar phantom wall. A 0.1 mm-thick 

transparent polyethylene foil covering the wall of electrode insertion was used as an 

adiabatic window transparent to infrared light. Two varnished copper wires (0.19 mm in 

diameter) were employed as probes to pick up the voltage value at 1 mm and 2 mm from the 

RF electrode surface. The wire tips were perpendicularly inserted 0.5 mm into the agar. 

Voltage differences with respect to the dispersive electrode of the RF generator were 

recorded with an Agilent DSO 1000 digital oscilloscope (Keysight Technologies, Santa 

Rosa, CA, USA) at a sampling rate of 1 S/s. A PRF protocol of 20 ms × 2 Hz and 45 V 

pulses was applied during a 2-minute period using an RF Neurotherm lesion generator (St. 

Jude Medical, Saint Paul, MN, USA). Temperatures were recorded by FLIR Model E60 

infrared camera (FLIR Systems, Wilsonville, OR, USA). 
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The validation was complemented with a computational model specifically designed to 

mimic the conditions of the experimental setup (see Fig. 2(B)). Its main distinctive features 

were: three-dimensional geometry, agar electrical conductivity of 0.31 S/m, no blood 

perfusion, ambient temperature of 21ºC, and thermal insulation on the walls. The model also 

considered the presence of the voltage recording wires connected to the oscilloscope both 

thermally and electrically. These two wires not only acted as small thermal sinks but, since 

the input impedance of each channel was ∼20 kΩ at 500 kHz (input impedance 1 MΩ||15 

pF), stray RF current could flow from the electrode through the wires and the oscilloscope to 

the reference point. The model mimicked this phenomenon by adding an external circuit to 

the simulated domain consisting of two 20 kΩ resistors, one for each wire. The computer 

results (temperature distributions and progress of the voltage at 1 mm and 2 mm away from 

the RF electrode) were compared to those obtained from the experiments.  

 

RESULTS 

Thermal performance 

Figure 3 shows the last 2 s of the temperature time courses at points TIP and SENS for the 

SP (45 V − 20 ms − 2 Hz) for 6 minutes without TC. The courses were qualitatively similar 

at both points and were characterized by abrupt rises at the start of each RF pulse and 

decayed exponentially during off-periods between consecutive pulses. Table II shows the 

minimal and maximal temperatures, along with the temperature spike magnitude computed 

at both points for the three different timing patterns and two voltage values, as well as for 

the cases with and without TC. The main difference between the TIP and SENS points is 

that the TSENS time course was a damped version of TTIP. While S
TIPT  varied between 6.5 and 
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25.0ºC for all the cases considered, S
SENST  only ranged from 0.4 to 2.7ºC. Interestingly, the 

temperatures registered at point SENS were generally very close to MIN
TIPT  values 

(differences of ∼1ºC). 

Figures 4 (A−C) show the temperature distributions in the zone close to the electrode tip 

for the three protocols (SP, AP and NP) just after the last RF pulse in the absence of a 

temperature controller. As expected, the temperature at the electrode tip was maximal just 

at the end of each RF pulse. When the RF pulse ends, heat is evacuated towards the 

electrode body. Similar MAX
TIPT  values were found for AP and NP. In contrast, the 

temperatures obtained with the SP were ~6ºC higher and a larger area surrounding the 

electrode tip reached high temperature values. The area of thermal lesion (assessed by 

contour Ω = 1) was similar for the three protocols and measured ~0.5 mm thick in the 

direction transverse to the electrode axis. 

Likewise, Figures 4D and 4E show the temperature distributions in the zone close to the 

electrode tip for the SP and NP when the temperature controller was considered. As 

expected, the temperatures in the tissue showed the same spatial distribution as in the case 

with no temperature controller, but the absolute values were considerably lower. In fact, no 

thermal lesion was observed in any case. As shown in Table II, the temperature controller 

kept MAX
SENST  at ~42ºC, which meant MIN

TIPT  in both cases was close to 41ºC. Since MAX
TIPT and 

MIN
TIPT  were both reduced by ~10ºC less than the cases with no TC, there was a negligible 

change of ~0.6ºC in the temperature spike magnitude. As a consequence, although the TC 

considerably reduced both the maximum and minimum temperatures, it seemed to have no 

effect on the temperature spike magnitude ( S
TIPT  was similar both with and without the TC). 
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Note that both MAX
TIPT  and MIN

TIPT  reached a plateau after ~21 s, which was approximately the 

time when MINT  reached 42ºC and the controller came into action. The time evolution 

shown in Figure 5 was similar for the other protocols considered. 

Regarding the thermal performance of the in vitro experimental study, the situation of 

the temperature evolution at point TA (see Fig. 2(B) for its location) was more or less 

comparable to that obtained from the corresponding computer model, with final 

temperatures of 26.73 ± 1.63ºC and 29.86ºC, in the experiments and simulations, 

respectively. The temperature measured at TA was the maximum value registered by the 

camera. This value did not correspond to the highest temperature (which is usually 

expected to occur at the electrode tip point) since in this study the electrode tip was really 

embedded in the agar phantom. The temperature spikes in the experiments and simulations 

were similar (0.3 ± 0.1ºC vs. 0.2ºC). Figure 6 shows the temperature distributions of the 

experimental and computational models at 30 s intervals. The shape of the temperature 

distributions of the computer and experimental results was generally similar. While the 

thermal edge effect at the electrode tip was clearly visible in the experimental results 

(especially at 30 s), it was hardly noticeable in the computer results due to the plane view 

selected, which does not include the tip (see Fig. 2(B)). Moreover, the high reflectivity 

associated with certain metal elements (e.g. electrode and wire zones) disturbed the 

temperature mapping and unfortunately could not be minimized. 

 

Electrical performance 

The values of the electric field magnitude |E| were quite stable during PRF application with 

no TC (|E| variation was negligible during each pulse). As the |E| value is directly 
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dependent on the voltage applied, it was therefore higher for NP (55 V-5 ms-5 Hz) than for 

SP (45 V-20 ms-2 Hz). On this account, the |E| value for the AP protocol (45 V-8 ms-5 Hz) 

coincided with those obtained for the SP (45 V-20 ms-2 Hz).  

When the TC was employed, the total number of applied pulses was considerably lower 

than the no TC case, with a reduction of 66.95% and 67.39% in SP and NP, respectively, 

while the |E| magnitudes remained practically unchanged. This finding suggests that 

although the tissue temperature could have a major effect on |E| through the σ(T) 

dependence, the spatial temperature gradients are too low to induce significant changes in 

the spatial distribution of σ between both models and hence there was no alteration in the 

magnitudes of the electric field. 

Regarding the spatial distribution of the electric field, the highest |E| value for the last 

pulse was reached at the electrode tip and dropped rapidly with distance from the electrode 

surface, as was also observed with the temperature distribution. Table III shows the 

maximum values of |E| at various locations. Neither pulse duration nor repetition frequency 

had an impact on the |E| value of the last pulse.  

The |E| value decayed as we moved away from the electrode surface, and this drop was 

stronger in the direction defined by the electrode axis (as shown in Fig. 7(B)). For instance, 

for SP with 45 V, it decayed from 26.4 kV/m (computed at 0.1 mm from the electrode 

surface) to 4.1 kV/m at P1, and from 60.9 kV/m (computed at 0.1 mm from the electrode 

surface) to 2.3 kV/m at P5. For distances from the electrode surface (r) of up to 10 mm, the 

electric field decreased proportionally to 1/r in the direction transverse to the electrode axis 

and to 1/r2 in the direction of the electrode axis. 
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In the electrical performance in the in vitro experimental study, the voltage values 

measured at 1 and 2 mm distances at the beginning of the PRF application were very 

similar to those obtained from the computer model: 29.9 ± 3.2 V vs. 29.5 V, and 24.3 ± 2.4 

V vs. 24.3 V, respectively. There was also good agreement between the values at the end of 

the application: 30.9 ± 3.0 V vs. 30.5 V, and 25.4 ± 2.0 V vs. 25.4 V, respectively. Figure 

7(B) shows the voltage and electric field distributions from the computer model built to 

validate the experimental results, which are seen to be very similar to those obtained from 

the model that reproduced the clinical situation (Fig. 7(A)). 

 

DISCUSSION 

The aim of this study was to compare the performance of two different PRF protocols in 

terms of the temperature generated and, in particular, the electric field. First of all, we 

conducted an experimental PRF study on agar phantom in order to guarantee the accuracy 

of the computer model predictions and validate the modeling methodology. Even though 

the final temperature value was lower in the experiment than in the simulations, we found 

both results in reasonable agreement. One of the possible reasons for the measurement 

interference could have been the effect of the higher than expected heat losses, in addition 

to the fact that the metal electrode had much lower emissivity than the agar phantom for 

which the camera had been calibrated. 

The thermal impact of PRF on tissue is defined by temperature spike phenomena within 

a range of independently modified maximum and minimum values that depend on the pulse 

protocol. As previously demonstrated by Cosman and Cosman [16], shorter pulses entail 

lower values of the temperature spike magnitude, while higher applied voltage and higher 

repetition frequency imply the opposite. In practical terms, the results confirmed that the 
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new protocol (55 V−5 ms−5 Hz) has a similar thermal effect to that obtained with the 

standard protocol (45 V−20 ms−2 Hz) but with a considerably higher electric field 

magnitude due to the fact that both protocols provided equivalent total energy during the 

procedure. 

When the temperature controller was included, the total applied pulses were 

considerably reduced (66.95% and 67.39%). This avoided thermal damage to the tissue 

(Fig. 4D−E) even though the maximum temperatures at the electrode tip were close to 

50ºC, neither did it have much effect on the electric field magnitude. 

In order to optimize PRF protocols it is necessary to maximize what can be defined as 

the ‘electrical dose’ while minimizing the thermal effects to avoid thermal injury, although 

it is no easy task to define this ‘electrical dose’. Experimental studies indicate that it cannot 

be defined as proportional to the delivered electrical energy, because protocols that apply 

similar heating yield different treatment outcomes [18]. Neither can it be defined as 

proportional to the product of the electric field magnitude and the active time (pulse 

duration × frequency) because that would imply that, for protocols of equivalent energy but 

different fields, the protocol with the highest ‘electrical dose’ would have the lowest 

electric field, and experimental results show that this is not the case. As it appears that PRF 

efficacy strongly depends on the electric field magnitude, the ‘electrical dose’ should 

therefore reflect this strong dependence on it. By increasing the applied voltage, the target 

tissue is exposed to a higher electric field, but this does not necessarily lead to an increase 

in the delivered energy – or in the thermal effects – if the pulses are shortened and the 

repetition frequency is reduced. 
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Since including the temperature controller reduced the total amount of applied pulses by 

66.95% and 67.39% for SP and NP, respectively, we could estimate a ‘cumulative time’ of 

equivalent continuous electric field application as the sum of the duration of all the pulses 

actually delivered, which would provide a ‘cumulative time’ of 4.75 s and 2.93 s for SP and 

NP, respectively. This difference between the protocols should be taken into account in any 

future studies that might prove that the ‘electrical dose’ is somehow related to this 

‘cumulative time’. 

Raising the voltage from 45 V to 55 V caused a proportional rise in the electric field, 

which at a distance of 2.5 mm increased to over 500 V/m (along the radial axis) and 900 

V/m (along the axial axis). As expected, the increase in electric field magnitude was 

approximately proportional to the increase in the applied voltage (≈ +20%). It can therefore 

be inferred that this increase in |E| would have a significant impact on the outcome of the 

PRF treatment. 

Another interesting finding was that the electric field magnitude shows a smaller 

decrease with distance in the direction transverse to the electrode axis, as compared to the 

direction parallel to it, which suggests that the ‘electrical dose’ is also affected by the 

relative positioning of the electrode with respect to the target nerve. In the regions close to 

the electrode tip, the electric field magnitude may be large enough to cause cell 

electroporation. Due to their geometry, when nerve fibers are exposed to an electric field 

with a direction approximately parallel to their orientation, the induced transmembrane 

voltage is significantly larger than that experienced by other types of cells [31]. Therefore, 

the electric field necessary for electroporation to occur in nerve fibers is lower than in other 

cells. Although monopolar pulses are the most effective in terms of cell electroporation, 
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pulsed AC fields are also known to cause it [32], and bursts of biphasic pulses in the same 

frequency range as those used in PRF have been shown to ablate tissues by means of 

irreversible electroporation [33]. 

Due to the lack of experimental studies in this area, it is not possible to indicate the 

electric field threshold necessary for the electroporation of nerve fibers to occur when using 

the typical PRF waveforms, although experiments performed with bursts of bipolar pulses 

can serve as a reference. The electric field required to cause electroporation through these 

pulses is about 2.5 times larger than that of conventional monopolar pulses of the same 

duration [34]. On the other hand, in a study by Abramov et al. [35] electric pulses of 7.5 

kV/m caused obvious signs of electroporation and, as a consequence, nerve conduction 

block, as well as disintegration of the myelin sheath and swelling of the nerve tissue in the 

rat sciatic nerve. We can therefore hypothesize that severe electroporation will occur in 

regions exposed to electric fields in the order of 18 kV/m and above, which, in our study, 

were only found very close to the electrode tip (distance < 0.5 mm). Nevertheless, it should 

be noted that this value could have been lower due to the exposure time in PRF treatments 

being longer than conventional electroporation protocols. Neither can we rule out the 

occurrence of mild electroporation – which does not damage neurons – for much lower 

fields. 

 

Limitations of the study 

This study has some limitations that should be pointed out. Firstly, the computer model 

represented a general approach to PRF used in pain treatment, but no specific location 

(target) for the PRF treatment was considered, i.e. the tissue was considered to be 

homogeneous. This simplification could introduce inaccuracies in the simulated model 
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since non-homogeneous tissue presents a distorted electric field distribution. Also, instead 

of modeling different compartments, one material was used in the study whose electrical 

conductivity value was the result of the conductivities of the adjacent tissues. Secondly, 

only one specific RF applicator was modeled, regardless of the other sizes habitually 

employed in PRF clinical practice (diameters ranging from 18 to 22 gauges and lengths 

from 5 to 10 mm). In spite of these two limitations, we consider the conclusions are still 

valid since this was a comparative study and the protocols considered were evaluated under 

identical conditions. 

 

CONCLUSIONS 

The recently proposed PRF protocol based on a higher voltage (55 V instead of 45 V), 

shorter pulses (5 ms instead of 20 ms) and a higher pulse frequency repetition (5 Hz instead 

of 2 Hz) can increase the electric field magnitude reached in the tissue without raising the 

temperature as the total time of exposure to RF is considerably reduced. However, what 

really avoids thermal damage is the use of a temperature controller, which keeps the 

electric field magnitude at the same level as when this system is absent and reduces the 

total delivered pulses by around 67%. 
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Table I. Electric and thermal properties of materials and tissue [24,36], [37]. 

Material σ (S/m) k (W/m∙K) ρ (kg/m3) c (J/kg∙K) 

Muscle 0.28 a 0.49 1090 3421 

Plastic 10-5 0.026 70 1045 

Electrode 7.4×106 15 8×103 480 

a This value (at 37ºC) was considered in order to match the simulated initial impedance to the 

clinically observed values (∼350 Ω, See “material properties” section.). 

σ: electrical conductivity; k: thermal conductivity; ρ: density; c: heat capacity. 
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Table II. Minimal (TMIN) and maximal (TMAX) temperatures, and temperature spikes (TS) assessed 

at the tip (TIP) and inside (SENS) the electrode after 6 min of PRF for different timing patterns 

(pulse duration × pulse repetition frequency) and applied voltages. 

Timing pattern Location 

Applied voltage 

45 V 55 V 

TMIN (ºC) TMAX (ºC) TS
  (ºC) TMIN (ºC) TMAX (ºC) TS

  (ºC) 

20 ms × 2 Hz 
SENS 52.6 54.3 1.7 61.2 63.9 2.7 

TIP 51.3 67.4 16.1 59.2 84.2 25.0 

8 ms × 5 Hz 
SENS 53.8 54.5 0.7 60.9 61.8 0.9 

TIP 52.7 61.6 8.9 60.4 73.9 13.5 

5 ms × 5 Hz 
SENS 47.4 47.8 0.4 52.9 53.5 0.6 

TIP 46.7 53.2 6.5 51.8 61.7 9.9 

20 ms × 2 Hz 

(TC) 

SENS 41.0 42.6 1.6 
 

TIP 40.6 56.8 16.2 

5 ms × 5 Hz 

(TC) 

SENS 
 

41.0 42.1 1.1 

TIP 40.6 51.1 10.5 

TC: Cases with temperature controller (RF pulses were modulated in order to keep the temperature 

inside the electrode below 42ºC). 
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Table III. Electric field magnitudes (V/m) measured at specific locations (see Fig. 1B) and at the 

end of the last RF pulse in the case of different timing patterns (pulse duration−pulses repetition 

frequency) and applied voltages (without temperature controller). 

Applied 

voltage 
45 V 55 V 

Timing 

pattern 
20 ms−2 Hz 8 ms−5 Hz 5 ms−5 Hz 20 ms−2 Hz 8 ms−5 Hz 5 ms−5 Hz 

1 4,106 4,210 4,165 5,047 5,015 5,047 

2 1,892 1,887 1,837 2,348 2,390 2,318 

3 1,080 1,063 1,022 1,366 1,395 1,292 

4 656 663 633 861 855 805 

5 2,329 2,305 2,237 2,946 2,958 2,807 

6 1,018 1,022 979 1,325 1,323 1,242 

7 612 605 576 789 801 734 

8 413 406 385 532 542 492 
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A  B  

Figure 1. (A) Geometry of the model including tissue, metallic electrode and plastic cover of the 

RF applicator. Dimensions in mm (out of scale). Note the detail of the electrode tip (scale in mm) 

consisting of a conical point with a 10º angle and rounded endpoint with an arbitrary 0.05 mm 

radius, which was assumed to avoid an infinite singularity in the model. (B) Specific locations 

chosen for evaluation of time course of electric field magnitude and temperature. Eight of these are 

separated from each other by 2.5 mm (P1−P4 in horizontal axis and P5−P8 in vertical axis). SENS 

corresponds to a point inside the conical tip of the electrode at a distance of 1 mm from its tip (TIP). 
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A B  

 

Figure 2. (A) Overview of the in vitro experimental setup based on an agar phantom. (B) Geometry 

of the computer model built to mimic the experimental setup (not to scale). The dispersive electrode 

was modeled on the wall parallel to the wall of electrode insertion.  
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Figure 3. Time course of the two last temperature spikes (in ºC) at the electrode tip ( TIPT ) and inside 

the electrode ( SENST ) after 6 min for the standard protocol (45 V−20 ms−2 Hz). The time course of 

SENST  is presented in detail in the additional window. Note that temperature spike magnitude 

(assessed as: MAXT  – MINT ) was much smaller at the SENS point. 
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A B C   

D    E   
 

Figure 4. Temperature distributions close to electrode tip just after applying the last RF pulse for 

different protocols without (A−C) and with (D−E) temperature controller. A and D: standard 

protocol (45 V−20 ms−2 Hz); B:  additional protocol (45 V−8 ms−5 Hz); C and E: new protocol (55 

V−5 ms−5 Hz). Black line is the damage contour Ω = 1 representing 63% of tissue damage. Note 

that the damage area is similar in (A−C), even though the maximum temperature reached in (A) is 

~6ºC higher, while no thermal lesion is observed in the cases with temperature controller (D−E). 
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Figure 5. Comparison of time courses of maximal and minimal temperatures between the cases 

with and without temperature control (TC). Temperatures were assessed at the electrode tip and 

correspond with those of the standard protocol (45 V−20 ms−2 Hz). 
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Figure 6. Temperature distributions from the in vitro experiments (upper) and computer modeling 

(bottom) at different times. Note that the wires designed to pick up voltage in the experiments 

(except their non-insulated ends) are really outside the agar phantom and are consequently not part 

of the material surface.  
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A.   B.  

Figure 7. Electrical potential distribution (V) during the last pulse of the 20 ms pulse duration 

protocol from the computational model based on the in vitro study using an  agar phantom (A) and 

from the modeling study in tissue  (45 V-20 ms-2 Hz) (B). Black contour lines represent electric 

field magnitude (V/m). Black dots are the points of voltage and field measurement from each 

model. 
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