Publications
Wireless Microstimulators Based on Electronic Rectification of Epidermically Applied Currents: Safety and Portability Analysis. In: 18th IFESS Annual Conference. 18th IFESS Annual Conference. Donostia-San Sebastián, Spain; 2013. pp. 213–216.
(2.64 MB)
. 
Volume Conduction for Powering Deeply Implanted Networks of Wireless Injectable Medical Devices: a Numerical Parametric Analysis. IEEE Access [Internet]. 2021 ;9:100594-100605. Available from: https://ieeexplore.ieee.org/document/9481290
(1.16 MB)
. 
A Versatile Multilevel Converter Platform for Cancer Treatment Using Irreversible Electroporation. IEEE Journal of Emerging and Selected Topics in Power Electronics. 2016 ;4(1):236 - 242.
(1.8 MB)
. 
Two-Port Networks to Model Galvanic Coupling for Intrabody Communications and Power Transfer to Implants. In: 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS). ; 2018. pp. 407-410.
(590.36 KB)
. 
Tumor growth delay by adjuvant alternating electric fields which appears non-thermally mediated. Bioelectrochemistry. 2015 ;105:16 - 24.
(1.24 MB)
. 
Towards addressable wireless microstimulators based on electronic rectification of epidermically applied currents. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Chicago: IEEE; 2014. pp. 3973 - 3976.
(414.25 KB)
. 
. .
Selective Electroporation of Liver Tumor Nodules by Means of Hypersaline Infusion: A Feasibility Study. In: 6th European Conference of the International Federation for Medical and Biological Engineering. Vol. 45. 6th European Conference of the International Federation for Medical and Biological Engineering. Springer International Publishing; 2015. pp. 821-824. Available from: http://dx.doi.org/10.1007/978-3-319-11128-5_204
(367.54 KB)
. 
Remote electrical stimulation by means of implanted rectifiers. PloS one [Internet]. 2011 ;6:e23456. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3151300&tool=pmcentrez&rendertype=abstract
(276.31 KB)
. 
Pulsed radiofrequency for chronic pain: in vitro evidence of an electroporation mediated calcium uptake. Bioelectrochemistry. 2020 ;136:107624.
(1001.17 KB)
. 
Proof of Concept of a Stimulator Based on AC Current Rectification for Neuroprosthetics. In: XXX Congreso Anual de la Sociedad Española de Ingeniría Biomédica. XXX Congreso Anual de la Sociedad Española de Ingeniría Biomédica. San Sebastián, Spain; 2012.
(298.89 KB)
. 
Powering Implants by Galvanic Coupling: A Validated Analytical Model Predicts Powers Above 1 mW in Injectable Implants. In: World Congress on Medical Physics and Biomedical Engineering 2018. IFMBE Proceedings. Vol. 68/3. World Congress on Medical Physics and Biomedical Engineering 2018. IFMBE Proceedings. Prague, Czech Republic: Springer; 2018. pp. 23-26.
(272.06 KB)
. 
Power Transfer by Volume Conduction: In Vitro Validated Analytical Models Predict DC Powers above 1 mW in Injectable Implants. IEEE Access. 2020 ;8(1):37808-37820.
(1.27 MB)
. 
Non-invasive assessment of corneal endothelial permeability by means of electrical impedance measurements. Medical engineering & physics [Internet]. 2010 ;32:1107–15. © 2010 IPEM. Published by Elsevier Ltd. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20832346
(1.39 MB)
. 
Nanosecond pulsed electric field delivery to biological samples: difficulties and potential solutions. In: Advanced Electroporation Techniques in Biology and Medicine. Advanced Electroporation Techniques in Biology and Medicine. ; 2010. pp. 353–370.
(837.16 KB)
. 
Monitoring the Effect of Contact Pressure on Bioimpedance Measurements. In: 018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). 018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). ; 2018. pp. 4949-4952.
. Modeling methods for treatment planning in overlapping electroporation treatments. IEEE Transactions on Biomedical Engineering. 2022 ;69(4):1318 - 1327.
(1.74 MB)
. 
Modeling Liver Electrical Conductivity during Hypertonic Injection. International Journal for Numerical Methods in Biomedical Engineering. 2018 ;34(1):e2904.
(634.63 KB)
. 
Long-term effectiveness of irreversible electroporation in a murine model of colorectal liver metastasis. Scientific reports. 2017 ;7.
(1.5 MB)

Irreversible electroporation shows efficacy against pancreatic carcinoma without systemic toxicity in mouse models. Cancer letters [Internet]. 2012 ;317:16–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22079741
(1.81 MB)
. 
Irreversible electroporation of the liver: is there a safe limit to the ablation volume?. Scientific Reports. 2016 ;6:23781.
(692.79 KB)

Irreversible Electroporation for Tissue Ablation. In: 5th Course ("Medical Applications of Electromagnetic Fields: Research and Therapy") of the School of Bioelectromagnetism Alessadro Chiabreara. 5th Course ("Medical Applications of Electromagnetic Fields: Research and Therapy") of the School of Bioelectromagnetism Alessadro Chiabreara. ; 2010.
. Irreversible electroporation for the treatment of cardiac arrhythmias. Expert Review of Cardiovascular Therapy [Internet]. 2018 ;16(5):349-360 . Available from: https://www.tandfonline.com/doi/abs/10.1080/14779072.2018.1459185
. Irreversible Electroporation. In: Irreversible Electroporation. Irreversible Electroporation. Berlin, Heidelberg: Springer Berlin Heidelberg; 2010. pp. 23–61. Available from: http://link.springer.com/10.1007/978-3-642-05420-4
(2.75 MB)
. 