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Electroporation is the phenomenon in which cell membrane permeability is increased by 
exposing the cell to short high electric field pulses. Experimental data shows that the amount of 
permeabilization depends on the conductivity of the extracellular medium. If medium 
conductivity decreases then it is necessary to deliver a pulse of larger field amplitude in order to 
achieve the same effect. Models that do not take into account the permeabilization effect on the 
membrane conductivity cannot reproduce qualitatively the experimental observations. Here we 
employ an exponential function for describing the strong dependence of membrane conductivity 
on transmembrane potential. Combining that model with numerical methods we demonstrate that 
the dependence on medium conductivity can be explained as being the result of increased 
membrane conductance due to electroporation. As experimentally observed, extracellular 
conductivities of about 1 S/m and 0.1 S/m yield very similar results, however, for lower 
conductivities ( < 0.01 S/m) the model predicts that significantly higher field magnitudes will be 
required to achieve the same amount of permeabilization. 
 
 
1. Introduction 
 
Electroporation, or electropermeabilization, is the phenomenon in which cell membrane 
permeability to ions and macromolecules is increased by exposing the cell to short (microseconds 
to milliseconds) high electric field pulses. The permeabilization can be either temporary 
(reversible electroporation) or permanent (irreversible electroporation) as a function of the 
electrical field magnitude and duration, pulse repetition frequency and number of the pulses. In 
vitro, reversible electroporation is now commonly used for gene transfection of cells in culture 1 
whereas irreversible electroporation is considered as a potential viable method for cold 
sterilization of liquid media 2, 3. In addition, reversible electroporation is also used in living 
tissues for in vivo gene therapy 4 and to enhance the penetration of anti-cancer drugs into 
undesirable cells (electrochemotherapy, ECT) 5. Recently, irreversible electroporation (IRE) has 
also found a use in tissues as a minimally invasive surgical procedure to ablate undesirable tissue 
without the use of adjuvant drugs 6. 
 
 Multiple in vitro experimental studies demonstrate that the extracellular medium 
conductivity (σe) has an influence on the electroporation phenomenon 1, 7-12. In five out of seven of 
these cited studies, it was observed that electroporation efficiency decreases when medium 



conductivity decreases but in the other two the opposite effect was observed, that is, efficiency 
decreased when medium conductivity increased 7, 9. In those two singular cases the pulse 
generator consisted of a capacitance charged to a high voltage that was allowed to discharge 
through the medium in which cells where contained. That is the oldest method used to generate 
electroporation pulses 13 and it has a well identified drawback when compared to modern square 
pulse generators: in these capacitance-discharge generators the applied pulse length depends on 
medium conductivity. And such dependence would explain the exceptional observation for those 
two cases: as medium conductivity increases the pulse length decreases and as a consequence the 
intensity of the electroporation phenomenon diminishes 14. Observations in all the other studies 
can be summarized as follows: 1) electroporation efficiency decreases as σe decreases, 2) 
decrease rate in efficiency as a function of σe is higher for lower  σe values and 3) electroporation 
efficiency sensitivity to σe varies significantly between experiments and depending on the way 
permeabilization is assessed. Here it is convenient to note that in the cited studies the depletion of 
ions from the medium was osmotically counterbalanced with neutral compounds such as sucrose. 
Otherwise, it could be reasonably argued that it is the osmolarity, and not the electrical 
conductivity, the main factor that influences electroporation.15 
 
 If we define a "critical" electric field magnitude, Ec, at which the electroporation effect is 
quantitatively the same for different extracellular conductivities, then it is possible to plot data 
from some of above cited studies 1, 10, 11 so that the above observations are illustrated in a 
comprehensible way (Fig. 1). The other two studies 8, 12 show that electroporation efficiency 
diminishes as σe decreases but do not provide data for representing  Ec at different extracellular 
conductivities.  
 
 The cases B and D on Fig. 1 are particularly illustrative. Both cases correspond to the 
same study and followed the same experimental procedures apart from the method employed for 
assessing electroporation efficiency. In D cell reversible permeabilization was evaluated by 
quantifying cell survival rate after electroporation in a medium containing bleomycin, which is a 
powerful cytotoxic drug barely able to penetrate the cells under normal conditions. In B direct 
cell death (necrosis) caused by irreversible permeabilization was quantified. As it can be 
observed in D, which is the case that requires a lower level of permeabilization, the 
permeabilization sensitivity to σe is almost insignificant whereas in B, which requires a higher 
level of permeabilization, the required field magnitude increases as σe decreases. Moreover, such 
field sensitivity to σe seems to become  larger as σe decreases. The motivation of the present study 
was to analyze whether it was possible to justify such patterns in electrical terms.  
 



 
Fig.1 Results from experimental studies showing that the electric field magnitude required to achieve a specific 
electroporation effect, Ec, depends on the extracellular conductivity, σe. A: 50 % green algae cells permeabilization 
after a single square pulse of 200 µs as assessed by Serva Blue dye uptake 1, B: 50% fibroblasts survival after a train 
of eight 100 µs pulses 10, C: definite level of gene expression (beta-galactosidase activity of 0.002 mU/ng DNA) in 
mesenchymal cells after a train of eight 100 µs square pulses in a medium containing a plasmid encoding the lacZ 
reporter gene 11, D: 50% fibroblasts permeabilization after a train of eight 100 µs square pulses as assessed by 
bleomycin uptake 10. 
 
 There are numerous evidences from experiments on cell suspensions 16-18, on isolated cells 
19-21 and on artificial membranes 22-24 that electroporation occurs when the transmembrane 
potential (Vm) induced by the electric field reaches a specific threshold. The value of such 
threshold depends on the characteristics of the applied pulses (number, duration and shape) and 
also on how electroporation is assessed (e.g. by noticing an increase of membrane conductance, 
by detecting intracellular contents release or by observing cell lysis). Nevertheless most authors 
report Vm threshold values in the range from 200 mV to 1 V.  

Therefore, a plausible hypothesis that was proposed in the past25, 26 for explaining the 
dependence of Ec on σe can be phrased as follows: when an external electric field is applied, the 
induced transmembrane potential (∆Vm) depends on the conductivity of the extracellular medium 
so that the threshold for the manifestation of the electroporation phenomenon can only be reached 
under some specific conditions. As it is reported in the appendix, in the case of a spherical cell it 
is possible to obtain analytical expressions for ∆Vm when an external electric is applied. And, 
taking into account realistic values for the geometry and for the dielectric parameters of the cells, 
such analytical expressions indeed show that the extracellular conductivity has an effect on the 
maximum value that ∆Vm can reach. However, the magnitude of such σe effect on the calculated 
∆Vm is insufficient for justifying the large dependences of Ec on σe that are observed 
experimentally (e.g. trace A in Fig. 1). Moreover, such analytical expressions are not able to 
predict the fact that Ec sensitivity to σe depends on the permeabilization level to be achieved, as 
illustrated in the cases B and D of Fig. 1. In other words, if it is assumed that σe only has an 



impact on the electroporation phenomenon by modifying the minimum electric field at which 
electroporation can be manifested, then traces B and D should be proportional. Hence we believe 
that the model described by such analytical expressions needs to be improved with other 
phenomena in order to predict the experimentally observed  behaviors. In particular, we propose 
to include the electroporation phenomenon (i.e. the formation of pores) in the model.  

 Here we hypothesize that the fact that membrane conductivity increases when 
electroporation occurs explains the observed phenomena. Reasoning behind this hypothesis is: 1) 
when an external voltage is applied, part of it drops at the membrane but the rest drops in the 
extracellular and intracellular media; 2) thus, voltage drop at the membrane, Vm, not only depends 
on its conductivity, σm, but also on the conductivity of extracellular and intracellular media (σe 
and σi respectively); 3) when no electroporation occurs, membrane conductivity is very low and 
voltage drop at the membrane is almost independent on σe and on σi, as described by the 
equations in the appendix; 4) however, when electroporation occurs because Vm reaches the 
required threshold, the conductivity of the membrane increases abruptly 27 and with a strong 
dependence on Vm 24; 5) as a consequence, voltage drop at the membrane is now significantly 
dependent on σe and on σi and in turn the membrane conductivity increase is also dependent on 
both conductivities. Then, since membrane conductivity reflects the permeabilization state at the 
time of the pulse, if is reasonable to expect that post-pulse effects of electroporation (e.g. uptake 
of molecular dyes, cell lysis, gene electrotransfer) will also be dependent on σe and on σi.  

 The purpose of the numerical study presented here is to demonstrate that the above 
hypothesis can indeed justify the dependence of electroporation efficiency on σe that is 
experimentally observed in the case of cells in suspension. 
 
 In the present report, the methods and the results sections are organized in two 
subsections. In both sections, the first subsection deals with the description and validation of a 
membrane conductivity model. The second subsection describes how that membrane conductivity 
model is employed in order to demonstrate that σe can indeed have a significant effect on the 
amount of permeabilization. 
 
  
2. Materials and methods 
 
2.1 Membrane conductivity model 
 
As a preliminary step, before addressing how extracellular conductivity influences 
permeabilization, we have selected a membrane conductivity model and we have assessed its 
performance by comparing simulated results with data from an experimental study in which the 
conductance of a dense cell suspension is measured during electroporation pulses 28. Details about 
the model and its justification can be found in the results and discussion section. Here we simply 
specify some aspects concerning the numerical method we employed for validating the 
performance of the model. 
  
 We have performed numerical modeling of the conductance of a cell in suspension in a 
similar way to what is described in 29. In particular, we have used a commercial finite element 
(FEM) software platform, COMSOL Multiphysics 3.5 (Stockholm, Sweden), to solve the steady-



state problem depicted in Fig. 2. The parameter values and the dimensions of the FEM model are 
summarized in Table 1. We selected the values for w and h (dimensions of the measurement 
chamber) so that the volume of the cell is equivalent to 19 % of the total volume of the chamber, 
as in the experimental study 28. The membrane thickness in the model is unrealistically large (50 
nm instead of 5 nm) in order to facilitate FEM analysis. We verified that in the much slower 
simulations with a membrane thickness of 5nm the results do not differ significantly from the 
results obtained with a 50 nm membrane.   
 

Since the membrane conductivity depends on the electric field and, in turn, the electric 
field depends on the membrane conductivity, an iterative process is required to perform the 
simulation. In this iterative process, it is computed first the electric field distribution assuming  σm 

= σm0, and then the equivalent Vm at each point of the membrane is  obtained as Vm =|Emembrane|.50 
nm, a new value for σm  is obtained according to Eq. 1 and the process is repeated until a stable 
solution is found. If in this iterative process it is modeled that the voltage at the electrodes is 
present since the first step, in some cases, the solution does not converge easily and oscillations 
in conductivity appear. Therefore, an alternative approach was tried here in order to facilitate 
convergence of the solution: the COMSOL simulation was in fact configured as a time transient 
simulation in which the applied voltage increased smoothly from 0 V to the final voltage and then 
remained at that final value until the end of the simulation. More specifically, the voltage raise 
consisted of a ramp function from time 0 to time 0.1 and the simulation finished at time 2. It must 
be noted that here the time points are indicated without units (e.g. seconds) as they are in fact 
arbitrary; time has no physical meaning in the simulation, it is employed for facilitating the 
solving process. For each simulation it was verified that the solution was indeed stable and that 
no oscillations remained during the phase in which the applied voltage reached its final value. 
 
  
Table 1 Model parameters for simulation of conductance of a single cell in suspension 
Symbol Value Definition, justification or source 

σm ( )10 −+= mV
mm eK βσσ  Membrane conductivity model 

σm0 2.5×10-7 S/m 
Membrane conductivity when Vm=0, form 30 if membrane 

thickness = 5nm 
σe1 1.58 S/m Extracellular conductivity, isotonic NaCl in 28

 

σe2 0.3 S/m 
Extracellular conductivity, isotonic 10% NaCl/90% sucrose 28, see 

text for further justification  
σi 0.5 S/m Intracellular conductivity 31

 

δ 50 nm Simulation membrane thickness, see text for justification   
R 2.8 µm Cell radius 28

 

Vp 0 to 6 V Applied potential, to produce fields from 0 to ~6 kV/cm as in 28
 

w 4.2 µm Simulation region width 
h 8.8 µm Simulation region height 
n 13320 Number of elements in the mesh (FEM parameter) 

 
 
 



 
 
Fig. 2 Geometrical features of a model for a single cell in suspension. This model was solved by means of FEM and 
an axial symmetry was introduced in order to reduce computation time. The conductivities of the extracellular and 
intracellular media are constant whereas the conductivity of the membrane (σm) depends on the local electric field 
which in turn depends on σm. The volume fraction of the cell is approximately 20%, as in 28. 
 
 
2.2 Modeling membrane conductivity increase dependence on extracellular conductivity 
 
For studying the influence of extracellular conductivity on membrane conductivity increase 
during electroporation, we have employed the previous numerical model with a minor 
modification of the geometrical dimensions (see Table 2); only the width, w, and the height, h, of 
the chamber are slightly larger in order to ensure electric field uniformity at distant points from 
the cell. Further details about the model and its justification, particularly the reason why we 
change the value of the constant K in the membrane conductivity model for each extracellular 
conductivity value, are given in the results and discussion section. 
 
  



Table 2 Model parameters for simulation of membrane conductivity dependence on extracellular conductivity in the 
case of a single cell in suspension 
Symbol Value Definition, justification or source 

σm ( )10 −+= mV
mm eK βσσ  Membrane conductivity 

β 16 Constant for σm 

K 
10-9 ×: 3.75 for σe1, 1.5 for 
σe2, 1.275 for σe3 and 

1.2525 for σe4 
Constant for σm 

σm0 2.5×10-7 S/m Membrane conductivity when Vm=0, see Table 1 
σe1 1 S/m Extracellular conductivity 

σe2 0.1 S/m Extracellular conductivity  
σe3 0.01 S/m Extracellular conductivity 
σe4 0.001 S/m Extracellular conductivity 
σi 0.5 S/m Intracellular conductivity 31

 

δ 50 nm Simulation membrane thickness, see text for justification  
R 2.8 µm Cell radius 28

 

Vp 0 to 5 V Applied potential, to produce fields from 0 to 5 kV/cm  
w 5 µm Simulation region width 
h 10 µm Simulation region height 
n 16212 Number of elements in the mesh (FEM parameter) 

 
 
 
3. Results and discussion 
 
3.1 Membrane conductivity model 
 
Membrane conductivity models for electroporation range from simple voltage-sensitive switches 
32  to complicated models that are supposed to be able to quantify the total number of pores and 
their dimensions 31, 33. Here we have decided to minimize assumptions regarding the 
electroporation process and the nature of the pores and we have chosen to employ a simple model 
that can be described with a single continuous function: 
 

( )10 −+= mV
mm eK βσσ  (1) 

 
where σm0 is the conductivity of the membrane for Vm=0 (before electroporation occurs) and K 
and β are two constants that describe how membrane conductivity increases as the 
transmembrane potential increases.  
 
 Under the hypothesis that membrane conductivity rise is due to pores, we can rewrite Eq. 
1 as: 
 

( )( )10 −+= mV
poresmm eβλσσσ  (2) 

 
where σpores would be the conductivity of the solution filling the pores, λ would be another 
constant and the term 



 

( )1−= mV
p eS βλ (3) 

 
would represent the relative area of the pores. Therefore, the constant K in Eq. 1 would depend 
on σpores. 
 
 For determining the value of the constants K and β we have made use of data reported in 
an experimental study in which the conductivity of a dense cell suspension was measured during 
electroporation for multiple pulse amplitudes 28. In particular, we manually adjusted the value of 
the constants K and β so that our model for a cell in suspension (see paragraphs below and Table 
1 and Fig. 2) provided conductance measurements that matched the experimental measurements 
at 2 µs after the beginning of the pulse. This initial adjustment was done for data obtained in 
isotonic saline (NaCl 0.9%, σe =1.58 S/m 28). Then, we tried to use the same membrane 
conductivity model for fitting experimental results obtained in isotonic 10% NaCl/90% sucrose 
(σe =0.3 S/m) and we discovered that experimental data seemed better approximated if K was 
halved (Fig. 3); which would be in agreement with Eq. 2 under the reasonable assumption that 
σpores depends on σe, as justified below.  
 
 Ionic species such as Na+, Cl- and K+ have diffusion coefficients in water of about 1.5×10-

9 m2/s. 34 This implies that in a pore with a length of 5 nm (cell membrane thickness) the ionic 
content will be a good mixture of the ionic contents of both compartments in less than 2 µs after 
pore creation (further discussed and justified some paragraphs below). Therefore, the 
conductivity of the pores can be assumed to be: 
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And the value of K for σe2, K2, relative to the value of K for σe1, K1, is: 
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 In the above case (σi =0.5 S/m , σe1 =1.58 S/m, σe2 =0.3 S/m) the value of K2 would be 
~0.4K1 which is reasonably close to the value obtained by fitting the experimental data 
(K2=0.5K1). As a consequence, for modeling the membrane conductivity increase dependence on 
extracellular conductivity we have decided to follow the model described in Eq. 1 with a K value 
that depends on the extracellular conductivity as described in Eq. 5. Actually, we have rounded 
σe1 to 1.5 S/m so that the expression we used for K is simplified: 
 

2
105 9 ieK

σσ +
×= −   (6) 

 
 As it can be observed in Fig. 3, with the exponential model for σm(Vm) described by Eq. 1 
it is possible to reproduce very accurately the conductance measurements experimentally 
obtained from a cell suspension subjected to electroporation. 28  



 
 A remarkable phenomenon that should be pointed out first is that whereas membrane 
conductivity rise as a function of Vm is extremely abrupt (model plotted in a logarithmic scale in 
the insert of Fig. 3), suspension conductance increase as a function of the applied field magnitude 
is much smoother. This behavior, which is also observed in living tissues 35, is linked to the main 
hypothesis of the present study: as |E| increases Vm also tends to rise which causes an increase of 
σm which in turn tends to lessen the increase of Vm in a sort of negative feedback fashion. 
 
 As it has been mentioned, we manually adjusted the constants K and β of Eq. 1 for 
matching the simulated data (bottom thick continuous line in Fig. 3) to the experimental data 
measured in saline (σe = 1.58 S/m). This adjustment yielded: K= 5×10-9 and β= 16. Then, by using 
the same model and constants for σm, we tried to fit the experimental data obtained in isotonic 
10% NaCl/90% sucrose with the extracellular conductivity value reported by the authors of the 
experimental study 28, σe= 0.158 S/m. However, such fitting was only partially successful, even 
when we tried by modifying the values of the constants K and β, we were not able to reproduce 
exactly the shape of the cell suspension conductance as a function of |E| (data not reported here). 
On the other hand, by modifying the value σe used in the simulations we noticed that we were 
able to get curves that matched the pattern of the experimental data. In particular, a value for σe of 
0.3 S/m yielded an almost perfect matching. Therefore, we are inclined to assume that the actual 
conductivity of the extracellular medium in 28 was 0.3 S/m (instead of 0.158 S/m). In favor of this 
assumption we can point out at least another fact besides our simulations results: according to 28, 
media conductivities were measured before the cell suspensions were prepared, not afterwards, 
and then, since an outflow of intracellular ions would be favorable during suspension storage 
because of the concentration gradient (time not indicated in 28), it is reasonable to expect lower 
values for σi and higher values for σe  than the initially measured ones (σi = 0.5 S/m, σe = 0.158 
S/m). As a matter of fact, we verified that by decreasing the value of σi we also obtained almost 
perfect fittings without requiring values of σe as high as 0.3 S/m (data not reported here). 
Moreover, dense concentrations of microorganisms in suspension, as it is the case, are known to 
increase significantly the conductivity of the medium due to metabolic byproducts 36. Hence the 
assumption that σe is larger than 0.158 S/m is quite plausible, together with a possible decrease of 
σi. However, for the sake of simplicity, in our simulations we have decided to keep σi constant 
and to assume that σe for isotonic 10% NaCl/90% sucrose is 0.3 S/m. With these values, the 
fitting was further improved when K was 2.5×10-9 instead of 5×10-9 (see Fig. 3). As pointed out 
above, this improvement by halving K is in agreement with the model described by Eq. 4 in 
which the conductivity of the pores, σpores, is the average value of σe and σi.  
 



 
Fig. 3 Experimental and simulated cell suspension relative conductance (conductance at 2 µs / conductance before 
pulse). Experimental data is from 28 when the extracellular medium is isotonic saline (○) and when the extracellular 
medium is isotonic 10% NaCl/90% sucrose (●). The simulated results (continuous lines) are based on the model 
presented in Fig. 2 when the membrane conductivity behaves as it is described in Eq. 3 (see insert).  The parameters 
σm0 and β (adjusted for isotonic saline experimental data) are equal for all simulated results whereas K has two 
different values (see text). The two thin dashed lines are sixth order polynomial approximations of the experimental 
data. 
 
 Fig. 4 shows that simulated transmembrane potential along the cell behaves according to 
Eq. 9 in the appendix (i.e. Vm proportional to cos (θ)) when the electric field magnitude is 1500 
V/cm. On the other hand, for larger field magnitudes (3000 V/cm and 6000 V/cm), Vm saturates 
at values around 1 V at the cell poles facing the hypothetical location of the electrodes. This 
phenomenon is the consequence of a large increase in membrane conductivity at the areas where 
Vm is above a specific threshold (around 1 V in this case) and it has been experimentally observed 
in actual cells by employing voltage-sensitive dyes 21. 
 
 



 
Fig. 4 Simulated transmembrane potential (Vm) from the model displayed in Fig. 2 for three different electric field 
magnitudes.  For 1500 V/cm (Vp = 1.32 V) the transmembrane potential is proportional to cos (θ) as predicted by Eq. 
1. For larger fields, 3000 V/cm (2.64 V) and 6000 V/cm (5.28 V), Vm saturates at the poles facing the electrodes due 
to the increase of membrane conductivity caused by electroporation, as experimentally observed in 21.  

 
 In our model we have specified that the conductivity of the pores (σpores) is the average 
value of σe and σi. This is done under the assumption that anions and cations diffuse sufficiently 
rapidly across the pores so that a perfect ionic mixture  is achieved within the pores in less than 2 
µs. This assumption is reasonably valid if the diffusion coefficient for ions inside the pores is 
similar to that of ions in aqueous solutions (D ~1.5×10-9 m2/s). However, diffusion across pores 
may be hindered and it is quite plausible that the diffusion coefficients of ions in the pores is 10 
or 100 times lower than in bulk water 37. Therefore, we decided to check whether the assumption 
of perfect mixture at 2 µs was realistic. For that purpose, we built a simple COMSOL model (Fig. 
5) for computing the equivalent conductivity of the pores medium 2 µs after pore creation. 
Equivalent conductivity of the pore medium was computed as σpores = Gpore × (pore length/pore 
section), where Gpore is the conductance assessed between both openings of the pore. As 
expected, at 2 µs, for the lowest diffusion coefficient (1.5×10-11 m2/s) concentration distribution 
within the pore is far from being a perfect mixture (data not reported). However, as it can be 
noticed in Table 3, equivalent pore medium conductivity does not diverge drastically from the 
perfect mixture case (D = ∞ m2/s). Hence we conclude that the assumption of perfect mixture is 
realistic for computing σpores in the context of the present study (we did check that considering 
σpores =0.11 S/m, for σe = 0.01 S/m, instead of σpores =0.2505 S/m did not have a significant 
qualitative impact on the results described in next section). 
 



 
 
Fig. 5 Geometry of the model employed for verifying that mere diffusion would be sufficient for assuring that 
conductivity of the medium in a pore would be close to the average value of σe and σi just 2 µs after pore creation. 
The initial concentration, c, in the intracellular medium is 0.5 mol/m3 whereas various initial concentrations are tried 
for the extracellular medium. Pore conductance, Gpore, is assessed between both openings of the pore assuming that a 
concentration of 1 mol/m3 has a conductivity of 1 S/m. Equivalent conductivity of pore medium, σpores, is calculated 
as σpores = Gpore × pore length/pore section. Results at 2 µs are shown in Table 3. 
 
 
Table 3 Equivalent conductivity of the medium inside the pores at 2 µs after pore creation for different diffusion 
coefficients and different extracellular conductivities 

 σi (S/m) 0.5 0.5 0.5 0.5 
 σe (S/m) 1 0.1 0.01 0.001 

D= ∞ m2/s 0.75 0.3 0.255 0.2505 
D= 1.5×10-9 m2/s 0.74 0.29 0.24 0.23 σpores (S/m) 
D= 1.5×10-11 m2/s 0.72 0.25 0.13 0.11 

 
 Instead of assuming that pores are filled with a mixture of extracellular and intracellular 
ionic solutions due to diffusion, an alternative physical model for the increase of membrane 
conductivity could be the following: the electric field creates pores or water channels in the 
membrane, as predicted by molecular dynamics simulations 38, 39, and then extracellular and 
intracellular ions are pulled and pushed through those pores because of the same electric field. 
Therefore, the equivalent membrane conductivity would be proportional to the area of the pores 
(which again we can imagine to be described by Eq. 3) and to the amount of free ions in the 
media in contact with the membrane. Ionic contents of the pores would not be relevant as 
extracellular and intracellular ions would be provided at sufficient speed: for an electric field 
magnitude in the order of 1000 V/cm, monovalent ions travel at a velocity of about 1 cm/s 40 
which implies that ions can be pushed, or pulled, through the pores in less than 0.5 µs 
(particularly if we take into account that fields in the vicinity of the pores will actually be much 
larger than 1000 V/cm). Hence, since the amount of free ions in a medium is roughly 



proportional to its conductivity, it turns out that both physical descriptions would in fact produce 
the same result in terms of electrical modeling: the increase of conductivity for a given 
permeabilization level (given by Eq. 3) is roughly proportional to the average value of value of σe 
and σi. 
 
 Finally, we want to point out in this section that other functions besides exponential 
functions could be also employed for modeling membrane conductivity. The only requirement for 
matching accurately the cell suspension conductivity experimental data seems to be an abrupt, 
but finite, increase of conductivity when Vm reaches values close to 1 V. The pattern of the 
dependence of cell suspension conductivity on electric field magnitude seems to be mostly 
determined by σe, σi and the geometry rather than by the shape of the function modeling σm. For 
instance, in Fig. 6 it can be noticed that the following power function also reproduces with high 
fidelity the experimental data: 
 

( )12
0 7.0 mmm V+= σσ  (7) 

 

 
 

Fig. 6 Experimental and simulated cell suspension relative conductance (conductance at 2 µs / conductance before 
pulse) when the model employed for membrane conductivity consists of a power function (see insert) instead of an 
exponential function (see Fig. 3). Experimental data is from 28 when the extracellular medium is isotonic 10% 
NaCl/90% sucrose (●).  Simulated results are depicted with a continuous line. The thin dashed line is a sixth order 
polynomial approximation of the experimental data. 
 
 
  
 
 
 



3.2 Permeabilization dependence on medium conductivity 
 
As expected, the simulated average membrane conductivity, mσ , (Fig. 7) increases as field 

magnitude increases above a certain threshold ( ~ 500 V/cm in Fig. 7). For field magnitudes 
between 1000 V/cm and 2500 V/cm the rise is quite steep but afterwards it moderates due to the 
mitigation of Vm increase mentioned before. Nevertheless, the most remarkable observable fact in 
Fig. 7 is that membrane conductivity increase depends significantly on the extracellular 
conductivity. For instance, for a given membrane conductivity value of 1×10-4 S/m it can be 
observed that the electric field magnitude required to reach it is slightly lower than 2000 V/cm if 
σe is 1 S/m, slightly larger than 2000 V/cm if σe is 0.1 S/m, of about 3000 V/cm if σe is 0.01 S/m 
and much larger than 5000 V/cm (out of scale) if σe is 0.001 S/m. Hence this is a first indication 
that the effect of electroporation indeed depends on the extracellular conductivity. Nevertheless, 
it is more interesting to analyze what happens in terms of permeabilization. 
 
 Following the pore model described by Eqs. 2 and 3, the obtained average conductivity 
values can be scaled according to the following equation so that the average relative area of the 
pores is obtained: 
 

pores

mm
pS

σ
σσ 0−

=   (8) 

 
where σm0 is the membrane conductivity when transmembrane potential is 0 V, and σpores is the 
equivalent conductivity of the medium filling the pores as described by Eq. 6. The result of such 
translation (Fig. 8) shows that the amount of permeabilization is indeed also dependent on the 
extracellular conductivity. In particular, if we plot the required electric field magnitude, Ec, 
required to achieve three different levels of permeabilization at 2 µs (relative pores area of 1×10-

5, 3×10-5 and 1×10-4) it can be observed that the resulting curves (Fig. 9) resemble the ones 
plotted in Fig.1 from experimental data. The critical field, Ec, is practically independent of σe 
when σe has values of about 0.1 S/m and 1 S/m, as it is the case for traces B and D in Fig. 1. For 
lower extracellular conductivities (σe < 0.1 S/m) modeled Ec may be significantly dependent on 
σe, as it is also the case for traces A and B in Fig. 1. More interestingly, such significant 
dependence of Ec on σe is dependent on the chosen amount of permeabilization: for a relative 
pores area of 1×10-5 (i.e. pores occupy 0.001 % of membrane area) the value of Ec is practically 
independent of σe whereas for a relative pores area of 1×10-4 the value of Ec is strongly dependent 
on σe. This last observation would explain what was noticed in 10 (i.e. traces B and D in Fig. 1): 
the lower amount of permeabilization required in D (cell death assessed after reversible 
electroporation followed by uptake of cytotoxic drug) is almost insensitive to σe whereas the 
higher amount of permeabilization required in B (direct cell death caused by irreversible 
electroporation) is significantly dependent on σe. 
 
 Our initial hypothesis was that the experimentally observed dependence of electroporation 
effects on the conductivity of the extracellular medium could be explained numerically as being 
the result of the dependence of membrane conductivity, σm, on the transmembrane potential, Vm. 
In the present study, by applying an exponential model for σm(Vm) we have provided evidences 
that support such hypothesis. Nevertheless we want to point out that other models for σm(Vm) 



would also yield the same conclusion. For instance, in the appendix it is reported that a sigmoidal 
model for σm(Vm) produces a similar qualitative behavior for the dependence of Ec on σe.   
 
 The exponential model we applied for σm(Vm) includes a term, σm0, for modeling leakage 
currents through the non-selective ion channels of the membrane. Neither the selective ion 
channels nor the voltage-gated channels are taken into account in our model. This simplification 
has also been performed in previous modeling studies 31, 33. Those non-linear ion channels are 
very relevant and abundant in excitable cells (e.g. neurons and myocytes) but their presence is 
very limited in other cells, such as the RBCs considered in our study. Nevertheless, even in the 
case of excitable cells, the contribution of those non-linear ion channels is not very significant in 
terms of conductance and in the context of the present study: during an action potential, the 
membrane conductivity of an axon membrane41 can only increase up to about 1×10-6 [S/m], a 
value that would be close to the average membrane conductivity starts to be significant according 
to our model (see Fig. 7). Therefore, if those selective and voltage-gated ion channels had been 
modeled in the current study, their effect on our hypothesis would had been negligible since the 
dependence of pores area on extracellular conductivity is observed for larger electric fields (Fig. 
8) 
 
  Finally, we would like to discuss briefly the experimental data shown in Fig. 1 regarding 
plasmid transfection (trace C): the dependence of the level of expression on the extracellular 
conductivity is not predicted precisely by what we have concluded before regarding the amount 
of permeabilization; note that traces for σe = 1 S/m and σe = 0.1 S/m barely diverge in Fig. 8 
whereas trace C in Fig.1 indicates that there is a significant difference in the level of expression 
for both conductivities. Various reasons could easily explain such discrepancy: 1) our modeling 
was intended for a single pulse, not for multiple sequential pulses, as it is normally the case in 
actual electroporation processes, and pulse repetition is known to have a memory effect on the 
conductivity of the membranes 42; 2) furthermore, our modeling only considers what happens 
during the first instants (2 µs) of the pulse, when it is believed that most small pores are created 
31, but does not predict how the pores could evolve afterwards as a function of the extracellular 
conductivity. Nevertheless, it must be pointed out that transport of DNA into the cell by 
electroporation is believed to be more complicated that the mere diffusion of the DNA constructs 
into the cells after membrane permeabilization. In particular, it has been proposed that 
electrophoretic forces play a significant role 43-45. If that is the case, then our model could also 
explain the experimental observations: whereas the pores areas (Fig. 8) for both extracellular 
conductivities are very similar, the conductivities are significantly different (Fig. 9) and therefore 
one could expect that electrophoretic forces would be also significantly different.  In particular, 
as observed in Fig 1, plasmid transfection for σe = 0.1 S/m would require a significantly higher 
field than the same level of transfection for σe = 1 S/m. 
 
 
 



 
Fig. 7 Modeled average conductivity of cell membrane when σe = 1 S/m (●), σe = 0.1 S/m (○), σe = 0.01 S/m (■) and 
σe = 0.001 S/m (□).  
 

 
Fig. 8 Modeled relative area of the pores (total are of pores / membrane area) when σe = 1 S/m (●), σe = 0.1 S/m (○), 
σe = 0.01 S/m (■) and σe = 0.001 S/m (□).  
 
 
 
 



 
Fig. 9 Modeled electric field required to achieve three different permeabilization degrees (i.e. relative pores area) 
plotted against extracellular conductivity (σe). The relative pores areas are: 1×10-5 (●), 3×10-5 (○) and 1×10-4 (■). 
 
 
 
 
 
4. Conclusion 
 
Experimental data reported in the scientific literature shows that the amount of permeabilization 
depends on the conductivity of the extracellular medium. In particular, if the medium 
conductivity decreases then it is necessary to deliver a pulse of larger field amplitude in order to 
achieve the same amount of permeabilization. Here we demonstrate that such phenomenon can 
be explained as being the consequence of the dependence of membrane conductivity on induced 
transmembrane potential when pulses are applied. 
 
 Extracellular conductivities of about 1 S/m and 0.1 S/m yield very similar results in terms 
of permeabilization, however, for lower conductivities ( < 0.01S/m) our model predicts that 
significantly higher field magnitudes may be required to achieve the same amount of 
permeabilization 
 
 It is worth noting that a significant partial result found out in this study is that cell 
suspension conductance increase due to electroporation as a function of E can be well reproduced 
by numerical simulations in which membrane conductivity dependence to Vm is modeled with 
functions that impose an abrupt rise, such as exponential functions or power functions. 
 
 



5. Appendix  
 
5.1 Mathematical prediction of the direct influence of extracellular conductivity on the 
increase of transmembrane potential. 
 
In the case of a spherical cell in suspension it is possible to obtain an expression for the increase 
of transmembrane potential in response to an electric field pulse of magnitude E 26: 
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where fs is a multiplying factor described in Eq. 10, R is the cell radius, θ is the angle between the 
electric field direction and the radius at which Vm is assessed, t is the time since the beginning of 
the pulse and τ is a time constant described in Eq. 11. 
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where σe is the extracellular conductivity, σi is the intracellular conductivity, σm is the membrane 
conductivity and d is the membrane thickness. 
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where εm is the membrane permittivity.  
 
 Taking into consideration realistic values for the geometry and for the dielectric 
parameters, it can be shown that these expressions indeed yield an effect of the extracellular 
conductivity (σe) on the transmembrane potential: 1) as σe decreases fs decreases and therefore the 
maximum level that Vm can achieve also decreases and 2) as σe decreases, the time constant τ, 
increases and consequently, for a finite duration pulse, the membrane is exposed for a shorter 
period to the maximum voltage. However, as discussed in 10, considering geometric and dielectric 
realistic values, the calculated Vm dependence on σe cannot match quantitatively what is observed 
experimentally. For instance, in the case of a decrease in extracellular conductivity from 0.1 S/m 
to 0.01 S/m the increase in Ec according to fs would be below to 3% (σm = 5×10-7 S/m, σi = 0.5 
S/m, d = 5 nm, R = 5 µm) and the time constant would increase from 0.35 µs to 2.53 µs (εm = 
5.64 × ε0), which is not very significant compared to the standard duration of electroporation 
pulses (100 µs). Both figures are far from justifying the huge increase in Ec that is observed in the 
curve A of Fig. 1, implying that another mechanism must exist in order to justify such 
experimental increase. More importantly, the above expressions for fs and τ do not predict the fact 



that Ec sensitivity to σe depends on the permeabilization level to be achieved, as illustrated in the 
cases B and D of Fig. 1. 
 
 
5.2 Dependence of critical field magnitude on extracellular conductivity when membrane 
conductivity is modeled with a sigmoid function.  
 
The curves depicted in Fig. 10 have been obtained with the following sigmoid model for σm(Vm): 
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This expression was selected because of having an abrupt increase in value around a threshold 
value (i.e. 0.75 V). We did not even tried to adjust its values so that it produced a reasonable 
reproduction of the cell suspension conductance measurements as we did with the power function 
in the previous section (Fig. 6).  As a matter of fact, we verified that such modeling by this 
sigmoid function was quite poor (data not reported here). Nonetheless, it can be observed that 
qualitatively the same behavior is obtained in terms of dependence of Ec on σe (Fig. 10 compared 
to Fig. 9). 
 
 

 
Fig. 10 Modeled electric field magnitude required to achieve three different permeabilization degrees when the 
membrane conductivity model consists of a sigmoid function (see insert) instead of an exponential function. Ec  is 
plotted against extracellular conductivity (σe). The relative pores areas are: 1×10-5 (●), 3×10-5 (○) and 1×10-4 (■). 
 
 
 
 



 
Acknowledgements 
 
This work was supported by grants from: CNRS, Institute of cancerology Gustave-Roussy, 
University Paris Sud, INCa (National Institute of Cancer, France – contract number 
07/3D1616/Doc-54-3/NG-NC) and French National Agency (ANR) through Nanoscience and 
Nanotechnology program (Nanopulsebiochip n° ANR-08-NANO-024). 
AI’s research is currently supported by a Ramón y Cajal fellowship from the Spanish Ministry for 
Science and Innovation. 
 
 



References 

1 E. Neumann, Bioelectrochem. Bioenerget., 1992, 28, 247-267 (DOI:DOI: 10.1016/0302-
4598(92)80017-B).  

2 J. Teissie, N. Eynard, M. C. Vernhes, A. Benichou, V. Ganeva, B. Galutzov and P. A. Cabanes, 
Bioelectrochemistry, 2002, 55, 107-112.  

3 T. Oshima and M. Sato, Adv. Biochem. Eng. Biotechnol., 2004, 90, 113-133.  

4 M. J. Jaroszeski, R. Heller and R. Gilbert, in , ed. nonymous Humana Press, Totowa, New 
Jersey, 2000,.  

5 A. Gothelf, L. M. Mir and J. Gehl, Cancer Treat. Rev., 2003, 29, 371-387.  

6 B. Rubinsky, G. Onik and P. Mikus, Technol. Cancer. Res. Treat., 2007, 6, 37-48.  

7 S. Jayaram, G. S. P. Castle and A. Margaritis, Appl. Microbiol. Biotechnol., 1993, 40, 117-122.  

8 V. L. Sukhorukov, H. Mussauer and U. Zimmermann, J. Membr. Biol., 1998, 163, 235-245.  

9 C. S. Djuzenova, U. Zimmermann, H. Frank, V. L. Sukhorukov, E. Richter and G. Fuhr, 
Biochim. Biophys. Acta, 1996, 1284, 143-152.  

10 G. Pucihar, T. Kotnik, M. Kanduser and D. Miklavcic, Bioelectrochemistry, 2001, 54, 107-
115.  

11 E. Ferreira, E. Potier, D. Logeart-Avramoglou, S. Salomskaite-Davalgiene, L. M. Mir and H. 
Petite, Gene Ther., 2008, 15, 537-544 (DOI:10.1038/gt.2008.9).  

12 Y. Antov, A. Barbul, H. Mantsur and R. Korenstein, Biophys. J., 2005, 88, 2206-2223 
(DOI:10.1529/biophysj.104.051268).  

13 M. Puc, S. Corovic, K. Flisar, M. Petkovsek, J. Nastran and D. Miklavcic, 
Bioelectrochemistry, 2004, 64, 113-124 (DOI:10.1016/j.bioelechem.2004.04.001).  

14 M. P. Rols and J. Teissie, Biophys. J., 1998, 75, 1415-1423 (DOI:10.1016/S0006-
3495(98)74060-3).  

15 M. J. van den Hoff, W. T. Labruyere, A. F. Moorman and W. H. Lamers, Nucleic Acids Res., 
1990, 18, 6464.  

16 A. J. Sale and W. A. Hamilton, Biochim. Biophys. Acta, 1968, 163, 37-43.  

17 F. Riemann, U. Zimmermann and G. Pilwat, Biochim. Biophys. Acta, 1975, 394, 449-462.  



18 J. Teissie and M. P. Rols, Biophys. J., 1993, 65, 409-413 (DOI:10.1016/S0006-
3495(93)81052-X).  

19 R. Stämpfli, An. Acad. Bras. Cienc, 1958, 30, 57-63.  

20 U. Zimmermann, G. Pilwat and F. Riemann, Biophys. J., 1974, 14, 881-899 
(DOI:10.1016/S0006-3495(74)85956-4).  

21 K. Kinosita Jr, I. Ashikawa, N. Saita, H. Yoshimura, H. Itoh, K. Nagayama and A. Ikegami, 
Biophys. J., 1988, 53, 1015-1019 (DOI:10.1016/S0006-3495(88)83181-3).  

22 I. G. Abidor, V. B. Arakelyan, L. V. Chernomordik, Y. A. Chizmadzhev, V. F. Pastushenko 
and M. P. Tarasevich, J Electroanal Chem, 1979, 104, 37-52 (DOI:DOI: 10.1016/S0022-
0728(79)81006-2).  

23 K. C. Melikov, V. A. Frolov, A. Shcherbakov, A. V. Samsonov, Y. A. Chizmadzhev and L. V. 
Chernomordik, Biophys. J., 2001, 80, 1829-1836 (DOI:10.1016/S0006-3495(01)76153-X).  

24 R. W. Glaser, S. L. Leikin, L. V. Chernomordik, V. F. Pastushenko and A. I. Sokirko, 
Biochim. Biophys. Acta, 1988, 940, 275-287.  

25 T. Kotnik, F. Bobanović and D. Miklavcˇicˇ, Bioelectrochem. Bioenerget., 1997, 43, 285-291 
(DOI:DOI: 10.1016/S0302-4598(97)00023-8).  

26 T. Kotnik, D. Miklavcic and T. Slivnik, Bioelectrochem. Bioenerget., 1998, 45, 3-16 
(DOI:DOI: 10.1016/S0302-4598(97)00093-7).  

27 R. Benz and U. Zimmermann, Biochim. Biophys. Acta, 1980, 597, 637-642.  

28 K. Kinosita Jr and T. Y. Tsong, Biochim. Biophys. Acta, 1979, 554, 479-497.  

29 I. Zudans, A. Agarwal, O. Orwar and S. G. Weber, Biophys. J., 2007, 92, 3696-3705 
(DOI:10.1529/biophysj.106.097683).  

30 J. Gimsa, T. Muller, T. Schnelle and G. Fuhr, Biophys. J., 1996, 71, 495-506 
(DOI:10.1016/S0006-3495(96)79251-2).  

31 W. Krassowska and P. D. Filev, Biophys. J., 2007, 92, 404-417 
(DOI:10.1529/biophysj.106.094235).  

32 T. R. Gowrishankar and J. C. Weaver, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 3203-3208 
(DOI:10.1073/pnas.0636434100).  

33 Z. Vasilkoski, A. T. Esser, T. R. Gowrishankar and J. C. Weaver, Phys. Rev. E. Stat. Nonlin 
Soft Matter Phys., 2006, 74, 021904.  



34 S. Koneshan, J. C. Rasaiah, R. M. Lynden-Bell and S. H. Lee, The Journal of Physical 
Chemistry B, 1998; 1998, 102, 4193-4204.  

35 N. Pavselj, Z. Bregar, D. Cukjati, D. Batiuskaite, L. M. Mir and D. Miklavcic, IEEE Trans. 
Biomed. Eng., 2005, 52, 1373-1381 (DOI:10.1109/TBME.2005.851524).  

36 P. Silley and S. Forsythe, J. Appl. Bacteriol., 1996, 80, 233-243.  

37 G. R. Smith and M. S. Sansom, Biophys. Chem., 1999, 79, 129-151.  

38 D. P. Tieleman, BMC Biochem., 2004, 5, 10 (DOI:10.1186/1471-2091-5-10).  

39 M. Tarek, Biophys. J., 2005, 88, 4045-4053 (DOI:10.1529/biophysj.104.050617).  

40 J. D. Hickey and R. Gilbert, DNA Cell Biol., 2003, 22, 823-828 
(DOI:10.1089/104454903322625037).  

41 S. Takashima, Biophys. J., 1979, 26, 133-142 (DOI:10.1016/S0006-3495(79)85240-6).  

42 A. Ivorra and B. Rubinsky, Bioelectrochemistry, 2007, 70, 287-295 
(DOI:10.1016/j.bioelechem.2006.10.005).  

43 S. I. Sukharev, V. A. Klenchin, S. M. Serov, L. V. Chernomordik and Y. Chizmadzhev, 
Biophys. J., 1992, 63, 1320-1327 (DOI:10.1016/S0006-3495(92)81709-5).  

44 M. Golzio, J. Teissie and M. P. Rols, Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 1292-1297 
(DOI:10.1073/pnas.022646499).  

45 S. Satkauskas, M. F. Bureau, M. Puc, A. Mahfoudi, D. Scherman, D. Miklavcic and L. M. 
Mir, Mol. Ther., 2002, 5, 133-140 (DOI:10.1006/mthe.2002.0526).  

 


