Publications
Export 44 results:
Author Title Type [ Year
Filters: Type is Journal Article and Author is Antoni Ivorra [Clear All Filters]
Auricular transcutaneous vagus nerve stimulation acutely modulates brain connectivity in mice. Frontiers in Cellular Neuroscience [Internet]. 2022 ;16:856855. Available from: https://www.frontiersin.org/articles/10.3389/fncel.2022.856855/abstract
. Floating EMG Sensors and Stimulators Wirelessly Powered and Operated by Volume Conduction for Networked Neuroprosthetics. Journal of NeuroEngineering and Rehabilitation [Internet]. 2022 ;19:57. Available from: https://doi.org/10.1186/s12984-022-01033-3
. Modeling methods for treatment planning in overlapping electroporation treatments. IEEE Transactions on Biomedical Engineering. 2022 ;69(4):1318 - 1327.
(1.74 MB)
. 
Powering Electronic Implants by High Frequency Volume Conduction: In Human Validation. IEEE Transactions on Biomedical Engineering. 2022 ;(Accepted).
(1.94 MB)
. 
Comparing High-Frequency With Monophasic Electroporation Protocols in an In Vivo Beating Heart Model. JACC: Clinical Electrophysiology. 2021 ;7(8):959-964.
(1.31 MB)
. 
Volume Conduction for Powering Deeply Implanted Networks of Wireless Injectable Medical Devices: a Numerical Parametric Analysis. IEEE Access [Internet]. 2021 ;9:100594-100605. Available from: https://ieeexplore.ieee.org/document/9481290
(1.16 MB)
. 
Auricular transcutaneous vagus nerve stimulation improves memory persistence in naïve mice and in an intellectual disability mouse model. Brain Stimulation [Internet]. 2020 ;13(12):494-498. Available from: https://doi.org/10.1016/j.brs.2019.12.024
. Dynamics of Cell Death After Conventional IRE and H-FIRE Treatments. Annals of Biomedical Engineering [Internet]. 2020 ;48:1451–1462. Available from: https://doi.org/10.1007/s10439-020-02462-8
. EView: An electric field visualization web platform for electroporation-based therapies. Computer Methods and Programs in Biomedicine. 2020 ;197:105682.
(1.9 MB)
. 
High-voltage pulsed electric field laboratory device with asymmetric voltage multiplier for marine macroalgae electroporation. Innovative Food Science and Emerging Technologies. 2020 ;(In press, Journal Pre-proof).
. In vitro study on the mechanisms of action of electrolytic electroporation (E2). Bioelectrochemistry [Internet]. 2020 ;133:107482. Available from: https://doi.org/10.1016/j.bioelechem.2020.107482
. Injectable Sensors Based on Passive Rectification of Volume-Conducted Currents. IEEE Transactions on Biomedical Circuits and Systems [Internet]. 2020 ;14(4):867-878. Available from: https://ieeexplore.ieee.org/document/9117042
. Interleaved intramuscular stimulation with minimally overlapping electrodes evokes smooth and fatigue resistant forces. Journal of Neural Engineering [Internet]. 2020 ;17(4):046037. Available from: https://doi.org/10.1088/1741-2552/aba99e
. Power Transfer by Volume Conduction: In Vitro Validated Analytical Models Predict DC Powers above 1 mW in Injectable Implants. IEEE Access. 2020 ;8(1):37808-37820.
(1.27 MB)
. 
Pulsed radiofrequency for chronic pain: in vitro evidence of an electroporation mediated calcium uptake. Bioelectrochemistry. 2020 ;136:107624.
(1001.17 KB)
. 
The combination of electroporation and electrolysis (E2) employing different electrode arrays for ablation of large tissue volumes. PLoS One [Internet]. 2019 ;14(8):e0221393. Available from: https://doi.org/10.1371/journal.pone.0221393
. Avoiding neuromuscular stimulation in liver irreversible electroporation using radiofrequency electric fields. Physics in Medicine and Biology. 2018 ;63(3):035027.
(1.33 MB)
. 
Design, Construction and Validation of an Electrical Impedance Probe with Contact Force and Temperature Sensors Suitable for in-vivo Measurements. Scientific Reports. 2018 ;8:14818.
(2.3 MB)
. 
Effect of applied voltage, duration and repetition frequency of RF pulses for pain relief on temperature spikes and electrical field: A computer modeling study. International Journal of Hyperthermia [Internet]. 2018 ;34(1):112-121. Available from: http://dx.doi.org/10.1080/02656736.2017.1323122
(676.96 KB)
. 
Impedance spectroscopy measurements as a tool for distinguishing different luminal content during bolus transit studies. Neurogastroenterology and Motility. 2018 ;30(6):e13274.
(1.16 MB)
. 
Irreversible electroporation for the treatment of cardiac arrhythmias. Expert Review of Cardiovascular Therapy [Internet]. 2018 ;16(5):349-360 . Available from: https://www.tandfonline.com/doi/abs/10.1080/14779072.2018.1459185
. Modeling Liver Electrical Conductivity during Hypertonic Injection. International Journal for Numerical Methods in Biomedical Engineering. 2018 ;34(1):e2904.
(634.63 KB)
. 
Anatomically Realistic Simulations of Liver Ablation by Irreversible Electroporation: Impact of Blood Vessels on Ablation Volumes and Undertreatment. Technology in Cancer Research & Treatment. 2017 ;[Epub ahead of print].
(1.15 MB)
. 
Avoiding nerve stimulation in irreversible electroporation: a numerical modeling study. Physics in Medicine and Biology. 2017 ;62(20):8060-8079.
(1004.9 KB)
. 
Demonstration of 2 mm thick microcontrolled injectable stimulators based on rectification of high frequency current bursts. IEEE Transactions on Neural Systems and Rehabilitation Engineering. 2017 ;25(8):1343 - 1352.
(969.52 KB)
. 